57 research outputs found

    External Validity: From Do-Calculus to Transportability Across Populations

    Full text link
    The generalizability of empirical findings to new environments, settings or populations, often called "external validity," is essential in most scientific explorations. This paper treats a particular problem of generalizability, called "transportability," defined as a license to transfer causal effects learned in experimental studies to a new population, in which only observational studies can be conducted. We introduce a formal representation called "selection diagrams" for expressing knowledge about differences and commonalities between populations of interest and, using this representation, we reduce questions of transportability to symbolic derivations in the do-calculus. This reduction yields graph-based procedures for deciding, prior to observing any data, whether causal effects in the target population can be inferred from experimental findings in the study population. When the answer is affirmative, the procedures identify what experimental and observational findings need be obtained from the two populations, and how they can be combined to ensure bias-free transport.Comment: Published in at http://dx.doi.org/10.1214/14-STS486 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org). arXiv admin note: text overlap with arXiv:1312.748

    Reconciling Predictive and Statistical Parity: A Causal Approach

    Full text link
    Since the rise of fair machine learning as a critical field of inquiry, many different notions on how to quantify and measure discrimination have been proposed in the literature. Some of these notions, however, were shown to be mutually incompatible. Such findings make it appear that numerous different kinds of fairness exist, thereby making a consensus on the appropriate measure of fairness harder to reach, hindering the applications of these tools in practice. In this paper, we investigate one of these key impossibility results that relates the notions of statistical and predictive parity. Specifically, we derive a new causal decomposition formula for the fairness measures associated with predictive parity, and obtain a novel insight into how this criterion is related to statistical parity through the legal doctrines of disparate treatment, disparate impact, and the notion of business necessity. Our results show that through a more careful causal analysis, the notions of statistical and predictive parity are not really mutually exclusive, but complementary and spanning a spectrum of fairness notions through the concept of business necessity. Finally, we demonstrate the importance of our findings on a real-world example

    Causal Inference and Data-Fusion in Econometrics

    Full text link
    Learning about cause and effect is arguably the main goal in applied econometrics. In practice, the validity of these causal inferences is contingent on a number of critical assumptions regarding the type of data that has been collected and the substantive knowledge that is available. For instance, unobserved confounding factors threaten the internal validity of estimates, data availability is often limited to non-random, selection-biased samples, causal effects need to be learned from surrogate experiments with imperfect compliance, and causal knowledge has to be extrapolated across structurally heterogeneous populations. A powerful causal inference framework is required to tackle these challenges, which plague most data analysis to varying degrees. Building on the structural approach to causality introduced by Haavelmo (1943) and the graph-theoretic framework proposed by Pearl (1995), the artificial intelligence (AI) literature has developed a wide array of techniques for causal learning that allow to leverage information from various imperfect, heterogeneous, and biased data sources (Bareinboim and Pearl, 2016). In this paper, we discuss recent advances in this literature that have the potential to contribute to econometric methodology along three dimensions. First, they provide a unified and comprehensive framework for causal inference, in which the aforementioned problems can be addressed in full generality. Second, due to their origin in AI, they come together with sound, efficient, and complete algorithmic criteria for automatization of the corresponding identification task. And third, because of the nonparametric description of structural models that graph-theoretic approaches build on, they combine the strengths of both structural econometrics as well as the potential outcomes framework, and thus offer a perfect middle ground between these two competing literature streams.Comment: Abstract change

    A General Algorithm for Deciding Transportability of Experimental Results

    Full text link
    Generalizing empirical findings to new environments, settings, or populations is essential in most scientific explorations. This article treats a particular problem of generalizability, called "transportability", defined as a license to transfer information learned in experimental studies to a different population, on which only observational studies can be conducted. Given a set of assumptions concerning commonalities and differences between the two populations, Pearl and Bareinboim (2011) derived sufficient conditions that permit such transfer to take place. This article summarizes their findings and supplements them with an effective procedure for deciding when and how transportability is feasible. It establishes a necessary and sufficient condition for deciding when causal effects in the target population are estimable from both the statistical information available and the causal information transferred from the experiments. The article further provides a complete algorithm for computing the transport formula, that is, a way of combining observational and experimental information to synthesize bias-free estimate of the desired causal relation. Finally, the article examines the differences between transportability and other variants of generalizability

    Causal Fairness for Outcome Control

    Full text link
    As society transitions towards an AI-based decision-making infrastructure, an ever-increasing number of decisions once under control of humans are now delegated to automated systems. Even though such developments make various parts of society more efficient, a large body of evidence suggests that a great deal of care needs to be taken to make such automated decision-making systems fair and equitable, namely, taking into account sensitive attributes such as gender, race, and religion. In this paper, we study a specific decision-making task called outcome control in which an automated system aims to optimize an outcome variable YY while being fair and equitable. The interest in such a setting ranges from interventions related to criminal justice and welfare, all the way to clinical decision-making and public health. In this paper, we first analyze through causal lenses the notion of benefit, which captures how much a specific individual would benefit from a positive decision, counterfactually speaking, when contrasted with an alternative, negative one. We introduce the notion of benefit fairness, which can be seen as the minimal fairness requirement in decision-making, and develop an algorithm for satisfying it. We then note that the benefit itself may be influenced by the protected attribute, and propose causal tools which can be used to analyze this. Finally, if some of the variations of the protected attribute in the benefit are considered as discriminatory, the notion of benefit fairness may need to be strengthened, which leads us to articulating a notion of causal benefit fairness. Using this notion, we develop a new optimization procedure capable of maximizing YY while ascertaining causal fairness in the decision process

    A Causal Framework for Decomposing Spurious Variations

    Full text link
    One of the fundamental challenges found throughout the data sciences is to explain why things happen in specific ways, or through which mechanisms a certain variable XX exerts influences over another variable YY. In statistics and machine learning, significant efforts have been put into developing machinery to estimate correlations across variables efficiently. In causal inference, a large body of literature is concerned with the decomposition of causal effects under the rubric of mediation analysis. However, many variations are spurious in nature, including different phenomena throughout the applied sciences. Despite the statistical power to estimate correlations and the identification power to decompose causal effects, there is still little understanding of the properties of spurious associations and how they can be decomposed in terms of the underlying causal mechanisms. In this manuscript, we develop formal tools for decomposing spurious variations in both Markovian and Semi-Markovian models. We prove the first results that allow a non-parametric decomposition of spurious effects and provide sufficient conditions for the identification of such decompositions. The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine, and we empirically demonstrate its use on a real-world dataset
    corecore